

Firefighter Andy Loller Weatherford Fire Department

Investigation FFF FY 18-07 Scenic Loop Complex Fire, Jeff Davis County, TX • June 10, 2018

TEXAS

State Fire Marshal's Office

Orlando P. Hernandez, State Fire Marshal

7915 Cameron Road Austin, Texas 78754

(512) 676-6800

www.tdi.texas.gov/fire

Contents

Acknowledgements	3
Executive Summary	4
Introduction	7
Weatherford Fire Department	8
Investigation	10
Findings and Recommendations	16
Appendix 1: Firefighter Fitness Resources	
Appendix 2: National Safety Culture Change Initiative (from U.S. Fire Administration)	

Acknowledgements

The Texas State Fire Marshal wishes to thank the following entities for their cooperation and assistance in the investigation of this incident and the preparation of this report:

Weatherford Fire Department Texas A&M Forest Service

A review of the report was conducted by representatives of the Texas Fire Service:

Texas Commission on Fire Protection
Texas Fire Chiefs Association
Texas State Association of Firefighters
Texas A&M Forest Service
State Firefighters' and Fire Marshals' Association
Texas A&M Engineering and Extension Service (TEEX)
Texas Fire Marshals' Association
Texas Chapter of the International Association of Arson Investigators

Executive summary

Firefighters from Texas Intrastate Fire Mutual Aid System (TIFMAS) Strike Team 137 (ST137) were deployed on June 6, 2018 to the Scenic Loop Complex fire in Jeff Davis County. On Sunday, June 10, 2018 while conducting fire operations, Weatherford Firefighter (FF) Richard "Andy" Loller experienced a cardiac event. He was transported to Big Bend Regional Medical center and stabilized. Later the same day he was being transferred by fixed-wing air ambulance to Odessa for more advanced care when he experienced cardiac arrest and could not be resuscitated. On Sunday, June 10, 2018, Texas A&M Forest Service Chief of Operations Paul Hannemann notified Deputy State Fire Marshal Lt. Brian Fine of the incident. Lt. Fine serves as the State Fire Marshal's Firefighter Fatality Coordinator, and initiated an investigation with the assigned case numbers of 18-530-06 and FFF FY18-07.

This death is classified as an on-duty death and the circumstances surrounding this tragic event bring to light the importance of maintaining physical fitness and continued medical screening.

The goal of this report is to challenge all agencies involved in mutual aid deployments to meet national fire service best practices identified in the recommendations to minimize the risk exposure to the men and women of the fire service. That path will honor the memory of Firefighter Loller and take the fire service to an even higher level of performance.

The State Fire Marshal's Office recommends that all fire departments incorporate the following into department policies and procedures:

- Deployable medical assets on the ground to include Advanced Life Support and Advanced Cardiac Life Support. (Page 16)
- Appropriate level of medical transportation based on the incident location. (Page 18)
- Development and testing of the Communications plan prior to and during operations. (Page 18)
- Use of technology to minimize firefighter exposure to hazards. (Page 19)

- Establishment of a wellness and fitness program by all fire departments. (Page 20)
- Adoption of "Cultural Change" by fire departments with a greater emphasis on firefighter safety. (Page 22)

This report is to honor FF Loller by taking the lessons learned from this tragic incident so that others may benefit during future mutual aid responses.

Firefighter Andy Loller, 42 Weatherford Fire Department

Introduction

The Texas A&M Forest Service notified the State Fire Marshal's Office on June 10, 2018, that Firefighter Andy Loller had passed away at the hospital after suffering a cardiac event while on duty.

The State Fire Marshal's Office (SFMO) commenced the firefighter fatality investigation under the authority of Texas Government Code Section 417.0075.

(b) If a firefighter dies in the line of duty or if the firefighter's death occurs in connection with an on-duty incident in this state, the state fire marshal shall investigate the circumstances surrounding the death of the firefighter, including any factors that may have contributed to the death of the firefighter.

Texas State Fire Marshal's Office Firefighter Fatality Coordinator Lt. Brian Fine was assigned to investigate the firefighter fatality. The Texas A&M Forest Service Fire Response Department assisted throughout the investigation of the incident.

Weatherford Fire Department

The Weatherford Fire Department (WFD) was chartered on April 2, 1878. By 1882, a Hose Company was formed, and a reel and hand pump were purchased. On August 7, 1884 an Engine Company was formed and a Silsby Steam Engine was placed in operation, destined to see a great deal of service. The Silsby Engine pumped its last fire for the City in 1914.

The WFD is currently a paid department with four stations that house three engines, a truck and a battalion chief.

Number of Firefighters:58

Population: 45,000

Service area: 99 square miles Annual calls for service: 5000

Firefighter Andy Loller

FF Loller began his career with Hudson Oaks Fire Department/Parker County ESD #3 in December 2004. The Weatherford Fire Department (WFD) took over emergency services for Parker County ESD #3 in November 2013. FF Loller and five other ESD #3 firefighters were hired and continued their careers with the Weatherford Fire Department.

FF Loller was married with two children.

Medical history

FF Loller had no significant personal medical history. His last complete cardiac physical was in June 2017; there were no abnormalities discovered. FF Loller was on a regular physical fitness program. FF Loller has a family history of the males dying before age 45.

Texas Intrastate Fire Mutual Aid System (TIFMAS)

TIFMAS is sponsored, maintained and mobilized by the Texas A&M Forest Service. TIFMAS mobilizes local resources to respond to statewide disasters including wildfires, floods and other hazardous situations. Firefighters are credentialed through TIFMAS using the

National Wildfire Coordinating Group training standards. TIFMAS also coordinates grants, training, qualifications and mobilizations systems to make statewide use of resources.

Investigation

The following information is provided by the State Fire Marshal's Office, Weatherford Fire Department, Jeff Davis County Sheriff's Office, Texas A&M Forest Service and the Tarrant County Medical Examiner's Office. Times noted are approximated from interviews, statements, recordings, and incident reports.

June 6, 2018

7:00 a.m.

Members of the Fort Worth Fire Department, Parker County ESD#1, Southlake Fire Department, Stephenville Fire Department and Weatherford Fire Department deploy as TIFMAS Strike Team 137 (ST137) to the Scenic Loop Complex Fire in Jeff Davis County, TX.

June 7, 2018

Unknown

ST137 was not assigned fire operation duties initially and they remained in the Alpine Fire Department station conducting equipment maintenance.

Later that day, ST137 took a tour of the operational area with the Incident Commander (IC).

ST137 and ST138 were assigned to "patrol and hold" a sixty-acre area that had burned.

June 8, 2018

8:00 a.m.

ST137 is assigned to the Long XII Fire and told to "patrol and hold." Activities were limited because it had rained that day. ST137 cut approximately two hundred feet of fire line.

June 9, 2018

8:00 a.m. ST137 is assigned to the Long X fire. It had rained and no fire suppression activities were conducted.

June 10, 2018

8:00 a.m. ST137 to include FF Loller receive their assignment to patrol the last section of a fire line along a ridge.

9:45 a.m. ST137 arrives on scene and gathers its equipment.

10:00 a.m. ST137 begins their ascent along the ridgeline. Firefighters are carrying personal equipment, hand tools and chainsaws. FF Loller takes a turn carrying the chainsaw.

10:45 a.m. ST137 arrives at a saddle and takes an extended break. FF Loller walks around and climbs a small ridge to see the view and observe wildlife.

11:15 a.m. ST137 begins their ascent to the top of the ridge.

11:30 a.m. FF Loller goes to one knee and complains of chest pain. Other team members come to his aid.

A paramedic assigned to ST137 assesses FF Loller. FF Loller is speaking in one to two-word sentences and pressing on his chest in obvious distress. The paramedic determines that FF Loller is having a possible cardiac event. There is no Advanced Life Support (ALS) equipment with the team. The paramedic starts an I.V. and gives a bolus of normal saline to treat for possible dehydration from to the climb. FF Loller becomes very anxious, complains his lungs are burning and there is pain in his right arm. One strike team member has Tylenol and they decide to administer it.

11:42 a.m. ST137 unsuccessfully attempts contact with the Line EMT via cell phone.

11:43 a.m. ST137 contacts Division Chief via cell phone and advises him of the situation.

ST137 attempts several times to contact Incident Command via radio. They try multiple channels and are unable to reach them.

11:53 a.m. Incident Command Communications (ICC) hears ST137 "Emergency Traffic" notification but is unable to get a reply.

11:54 a.m. ST137 contacts 911 via cell phone and requests a medical helicopter.

ST137 also establishes contact with Ft. Davis via radio.

ST137 begins establishing a primary and secondary landing zone.

ST137 request a status update on the aircraft with an ETA. ST137 is told there is no ETA or to standby.

Fort Davis notifies Aerocare to respond and is advised they have a 90-minute ETA.

ST137 works to clear a primary and secondary landing zone.

Medical Unit Rehab Crew (MURC) is notified by the ICC.

11:55 a.m. ICC tries to contact ST137 via radio but gets no response.

11:56 a.m. ICC tries to contact ST137 via radio but gets no response.

11:58 a.m. ICC establishes radio communication with ST137 on MED channel. ST137 states they have one firefighter with chest pain and need a medical helicopter. ST137 states they contacted 9-1-1 via telephone.

Personnel in the Command Post (CP) discuss whether the patient needs to go to Level 1 hospital in El Paso. The MURC Supervisor requests patient to be flown to Command Post for evaluation. MEDLT states medic treating the patient needs to make the decision on where to go.

Operations advises the helicopter would not have enough fuel to fly to El Paso and return. It was decided if the patient needs to go to El Paso another helicopter would be notified, and they would meet and transfer the patient.

- 12:05 p.m. Operations is notified there is a Type 3 helicopter at base camp with an EMT-Basic. They were advised a paramedic with a heart monitor and cardiac medications needs to be on board.
- 12:20 p.m. Helicopter is "reconfigured" to transport patient and EMT-B.

Aerocare advises MED301 they have a 90-minute ETA.

- 12:21 p.m. Fort Davis Incident Command Post (ICP) advises to launch helicopter when available. Helicopter crew is notified of the incident.
- 12:40 p.m. Helicopter lifts off with EMT and cardiac monitor
- 12:45 p.m. Line medic arrives and has no ALS equipment. He does have aspirin and it is administered to FF Loller.

Helicopter lands at incident location.

FF Loller is connected to oxygen and a 12-lead cardiac monitor (EKG). The EKG shows ST elevation in the inferior lead.

Aerocare is canceled.

ST137 EMT-P decides FF Loller is unstable and needs to go to the closest facility, Big Bend Medical Center (BBMC) in Alpine, TX.

BBMC is a Level 4 facility and does not have advanced cardiac care but can stabilize the patient.

1:06 p.m. Helicopter lifts off en route to BBMC.

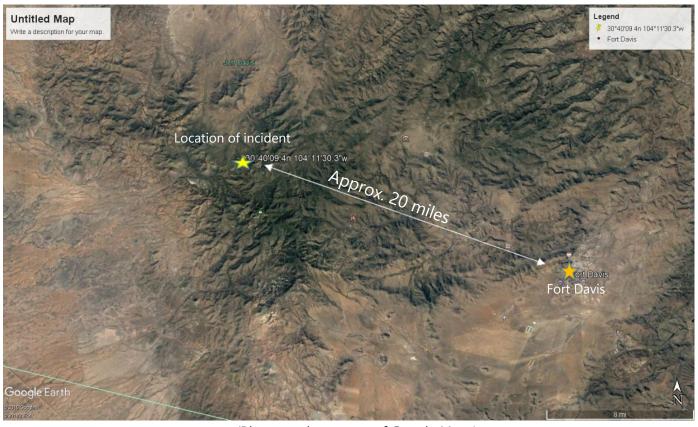
1:15 p.m. MEDLT notifies BBMC of incoming patient and status. BBMC states he should go to a Level 1 facility and are told the helicopter does not have enough fuel. They state they will do their best to stabilize and prepare a secondary transport to a Level 1 facility.

1:29 p.m. Helicopter lands in parking lot of BBMC and patient care is transferred to Emergency Department (ED) staff.

ED staff stabilize FF Loller and arrange secondary transport.

Approx. FF Loller transported by First Flight Air Ambulance to Medical Center 2:20 p.m. Hospital, (MCH) Odessa, TX.

Approx. FF Loller goes into cardiac arrest. CPR and Advanced Cardiac Life Support 2:40 p.m. (ACLS) is initiated.

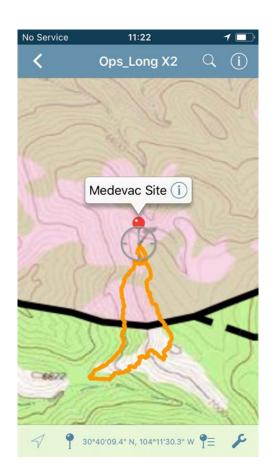

Approx. FF Loller arrives at MCH ED, CPR and ACLS is continued.

3:52 p.m.

3:57 p.m. FF Loller is pronounced deceased.

June 12, 2018

7:45 a.m. An autopsy is conducted at the Tarrant County Medical Examiner's Office conducted by Tarrant County Medical Examiner Nizam Peerwani. The cause of death was determined to be sudden cardiac death due to acute myocarditis. The manner was determined to be natural.



(Photograph courtesy of Google Maps)

L: Area of operations for ST137; R: View toward tummit where the landing zone was established.

(Photographs courtesy of ST137)

A: Location of landing zone R: Aircraft on the ground, preparing for transport (Photographs courtesy of Texas A&M Forest Service)

Findings and recommendations

Recommendations are based upon nationally recognized consensus standards and safety practices for the fire service. Fire departments and firefighting personnel should know and understand nationally recognized consensus standards. Fire departments should create, maintain, and educate personnel on Standard Operating Guidelines (SOGs) and Standard Operating Procedures (SOPs) that ensure effective, efficient, and safe firefighting/emergency/training operations.

Although the following recommendations may not have prevented the death of Firefighter Loller, the State Fire Marshal's Office offers these recommendations to:

- Improve the emergency response to medical events on the fireground
- Reduce the risk of heart attacks and sudden cardiac arrest among firefighters
- Provide an additional level of safety for firefighters when operating on a wildland fire.

All fire departments should know and understand the following standards and are encouraged to develop programs based on them to increase the level of safety for fire department personnel.

Finding 1

The medical component of the Incident Management Team (IMT) was established. The medical component did not include Advanced Cardiac Life Support components that were able to be readily deployed within the operational area.

Recommendation 1

All large incidents should have an established medical care policy that includes Advanced Cardiac Life Support. Each minute a victim goes without treatment decreases the likelihood of surviving without disability, and survival rates depend greatly on where the cardiac arrest occurs. The treatment goal for a cardiac arrest is to facilitate the return of circulation and restore the electric rhythm, while for a myocardial infarction, it is to reopen blocked arteries and restore blood flow.

When operating in a wildland firefighting setting, there is going to be an expected delay in providing the care. Agencies should equip front-line resources with some level of cardiac care equipment. This should include at a minimum an Automatic External Defibrillator (AED) and first level cardiac medications appropriate for the responder's certification level.

Historically the leading cause of duty-related death among U.S. firefighters is sudden cardiac death (SCD), which accounts for about 50 percent of on-duty firefighting fatalities. About 90 percent of these SCD cases will be attributable to coronary heart disease (CHD) and usually occur in firefighters age >45 years.

Little is known about SCD in young firefighters. A case-control study of SCD among firefighters age \leq 45 years examined the associated cardiovascular disease (CVD) risk factors and underlying pathologic features. The results from the study support the finding that on-duty SCD in younger U.S. firefighters, even those age <35 years, is primarily related to preventable lifestyle factors, which culminate in CHD, as well as other pathologies.

The American Heart Association's guidelines recommend that the artery be reopened within 90 minutes for the best patient outcome. This is from the time of symptom onset until the time the procedure is started to reopen the artery.

The first hour after the onset of a heart attack is called the golden hour. Appropriate action within the first 60 minutes of a heart attack can reverse its effects.

This concept is extremely important to understand because most deaths and cardiac arrests occur during this period. However, if the person reaches the hospital and gets treated within this period he/she can expect near-complete recovery.¹

Finding 2

The IMT had medical ground transportation available, but no resources were readily available for air evacuation. Flight time for the closest medical helicopter was approximately ninety minutes. An aircraft on site to provide firefighting support was used as a medical evacuation helicopter. The aircraft was a civilian tourist helicopter that had been contracted for fire suppression related activities. This aircraft was not prepared to be in a stand-by mode and not equipped for a medical transport. The aircraft had to be "configured" to fly this mission. This took approximately twenty minutes to complete, further delaying the response. It took fifty-one minutes from the time of ST137's request for a helicopter until the helicopter was on scene. Additionally, once dedicated to the transport, the aircraft lacked the fuel to reach a facility with the appropriate level of care.

¹ https://www.jems.com/articles/2012/02/expansion-golden-hour.html Investigation FFF FY18-07

Recommendation 2

NFPA 1051² identifies the requisite skills of a Wildland Fire Officer is to "provide for medical treatment, given an injured or ill firefighter and agency policies and procedures, so that the appropriate emergency treatment is provided, appropriate notifications are made, and required reports are completed."

While operating in remote locations the IMT should have a medical evacuation plan that includes a contracted air medical service to provide a dedicated rotary wing aircraft to be staged at the incident. Air ambulances provide important services by transporting patients with time-critical injuries and conditions to medical facilities and providing medical care to patients while en route.³ The aircraft and crew should be able to respond at a moment's notice within the incident operational area. The aircraft and crew should be able to provide an advanced level of care and be able to reach the appropriate care facility. NFPA 1143⁴ and NFPA 1521 Standard for Fire Department Safety Officer⁵ define some of the requirements for the Safety Officer and plan.

Recent military data demonstrates the significant benefit of delivering more advanced, time-sensitive treatments to critical trauma patients during transport. It's reasonable to believe this same clinical benefit should be seen in other life-threatening conditions. Ultimately, the decision to utilize air medical transportation should be guided by the need to manipulate time for the clinical benefit of the patient either by transporting the patient to definitive care, by transporting critical care to the patient, or both.⁶

Finding 3

ST137 followed the designated communications plan, but this plan did not work. ST137 initial contact was with Division B who advised him to contact Command directly. ST137 made several attempts to contact Command on VTAC36, a repeated channel. ST137 unsuccessfully tried contact on other command channels. ST137 simultaneously contacted Ft. Davis dispatch via radio and personal cell phone. Other units heard the traffic and were able to relay to Command that they needed to switch to Fort Davis channel. During the incident it appeared two separate dispatchers were working the same incident on different channels.

Recommendation 3

Incident Management Teams must develop a working communications plan. This plan must

² NFPA 1051 Standard for Wildland Firefighting Personnel Professional Qualifications (2016 edition)

³ https://www.ems.gov

⁴ NFPA 1143 Standard for Wildland Fire Management (2018 edition)

⁵ NFPA 1521 Standard for Fire Department Safety Officer (2015 edition)

⁶ Journal of Emergency Medical Services www.jems.com

be developed in accordance with ICS/NIMS, NFPA 1561 Standard on Emergency Services Incident Management System and Command Safety (2014 edition), NFPA 1221 Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems (2019 edition).

Once the plan is developed it is recommended that the plan be tested at the operational level to ensure communication between elements is effective.

Finding 4

ST137 and other assets were deployed to check their assigned area after the fire was contained/extinguished.

Recommendation 4

Consider the use of small Unmanned Aircraft Systems (sUAS) and manned aircraft to conduct observations and size-up of the fireground during active suppression and during the mop-up stages of the incident. The use of sUAS greatly reduces the risk to firefighters by providing real-time intelligence to Incident Command and the firefighters. sUAS can observe difficult terrain without placing firefighters in a position to sustain injuries or illness.

NFPA 1143⁷ states; The Incident Commander responsibilities include;

- (4) ensuring adequate safety measures are followed, using the following principles:
 - (a) Activities that present a significant risk to the safety of firefighters shall be limited to situations where there is a potential to save endangered lives.
 - (b) In those situations where improved property is threatened but lives are not at risk, threats to firefighter safety shall be minimalized.

Additionally, NFPA 1143 7.2.3 states the incident management plan shall address firefighter and public safety.

The NFPA has recognized the use of sUAS in public safety and has developed NFPA 2400⁸. NFPA 2400 4.4.2 addresses the use of sUAS for risk assessment. NFPA 2400 is a good starting point for any agency wishing to develop a program.

⁷ NFPA 1143 Standard for Wildland Fire Management 6.2.1.2 (2018 edition)

⁸ NFPA 2400 Standard for Small Unmanned Aircraft Systems (sUAS) Used for Public Safety Operations (2019 edition)

Finding 5

The Weatherford Fire Department has an established wellness and fitness program. This includes annual medical examinations for all department members.

Recommendation 5

The Weatherford Fire Department incorporates a regularly scheduled physical fitness and medical exam into its operations. FF Loller had completed several exams during his time with the WFD and there were no significant findings.

All fire department personnel and municipal leaders should know and understand nationally recognized consensus standards to ensure that effective, efficient, and safe firefighting operations include Occupational Wellness.

Wellness and fitness programs should be modeled in accordance with National Fire Protection Association (NFPA) Standards, including:

- NFPA 1500, Standard on Fire Department Occupational Safety and Health;
- NFPA 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments;
- NFPA 1583, Standard on Health-Related Fitness Program's for Fire Department Members;
- International Association of Fire Fighters;⁹
- Fire Service Joint Labor Management Wellness-Fitness Initiative;
- International Association of Fire Chiefs;10
- · Fire Service Joint Labor Management Wellness/Fitness Initiative; and
- The National Volunteer Fire Council¹¹ Heart-Healthy Firefighter Program.

According to the 2015 NFPA Firefighter Fatality Report, 51 percent of firefighter fatalities reported nationally were the result of sudden cardiac death.¹²

Wellness-Fitness Program assessments have two major components and should be conducted annually. The two program components are:

Medical/Physical Examination

Medical history

⁹ https://www.iaff.org/wfi/

¹⁰ https://www.iafc.org/topics-and-tools/resources/resource/fire-service-joint-labor-manage-ment-wellness-fitness-initiative

¹¹ http://www.nvfc.org/programs/heart-healthy-firefighter-program

¹² http://www.nfpa.org/~/media/files/research/nfpa-reports/fire-service-statistics/osfff.pdf?la=en

- · Complete physical examination, including blood pressure
- Fasting metabolic panel, including total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, and glucose values
- Urinalysis
- Vision test
- Audiogram
- Spirometry (lung capacity test)
- Chest x-ray
- Stress electrocardiogram
- Cancer screening: prostate-specific antigen test for men; over age 50, over age 40 with a positive family history, African-American, or with other clinical indications; and mammogram for women over age 40

Fitness assessment

- · Aerobic capacity, calculated using the stress electrocardiogram results
- Body composition, using a skin caliper test
- Muscular strength, using a hand grip strength test
- Muscular endurance, using number of push-ups and crunches
- Flexibility, using a sit-and-reach test

Annual physical fitness examinations are recommended for all department members. Consider annual medical evaluations for all firefighters, consistent with NFPA 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments, to determine their medical ability to perform duties without presenting a significant risk to the safety and health of themselves or others.¹³

Proactive steps toward prevention can and should be done in the fight against atherosclerosis, the primary cause of cardiovascular disease. As with many diseases, early detection in asymptomatic individuals is likely to increase benefits. These benefits can be realized through changes in diet and lifestyle, or when indicated, via drug therapies or other medical treatments. Conversely, if detection is not accomplished until the more advanced stages of cardiovascular disease, the negative consequences such as heart disease and stroke can be extremely severe, especially in public safety workers.¹⁴

The National Fallen Firefighters Foundation (NFFF) has developed 16 Firefighter Life Safety Initiatives (FLSIs)¹⁵ to ensure firefighters return home safely after every shift. FLSI

¹³ NFPA 1582, Standard on Comprehensive Occupational Medical Program for Fire Departments

¹⁴ Dr. Jonathan Sheinberg, MD, FACC

¹⁵ http://www.everyonegoeshome.com/16-initiatives

6 states: "The most significant reductions in line-of-duty deaths are likely to be achieved through increased medical surveillance and physical fitness programs." This initiative seeks to increase awareness of the need for medical and physical wellness programs for every firefighter.

Finding 6

The Fire Service needs to adopt "Cultural Change." Despite improvements in personal protective equipment (PPE), apparatus safety devices, more availability of training, greater emphasis on firefighter health and wellness, and decreases in the number of fires and dollar loss due to fires, the rate of on-duty firefighter deaths and injuries has remained relatively unchanged in the past four decades.

Recommendation 6

The State and Federal Fire Service needs to continue to adopt "Cultural Change." Simply having firefighters who are willing to respond is not enough. Incident Commanders and firefighters need to be prepared mentally and physically for the duties they are to perform. The primary goal for every member of the department should be firefighter safety. This is done through personal responsibility and accountability.

"Culture Change" is not "Tradition Change."

NFFF's 16 Firefighter Life Safety Initiatives¹⁶ are directly related to this effort.

FLSI 1 states: "Define and advocate the need for a cultural change within the fire service relating to safety; incorporating leadership, management, supervision, accountability, and personal responsibility."

The recommendations above specifically address changes that need to be made regarding firefighter safety, management, and supervision.

Merriam-Webster defines "culture" as "a way of thinking, behaving, or working that exists in a place or organization."

22

¹⁶ http://www.everyonegoeshome.com/16-initiatives

Many resources are available to assist fire departments and firefighters in providing firefighter fitness information and establishing a fitness/wellness program. The following sites are just a few that were noted.

Heart Disease And Firefighters: How And Why? *September* 18, 2012, By John Hofman. http://www.fireengineering.com/content/fe/en/articles/2012/09/heart-disease-and-firefighters-how-and-why.html

Heart-Healthy Firefighter Program, National Volunteer Fire Council http://www.nvfc.org/programs/heart-healthy-firefighter-program

Heart disease is the leading cause of on-duty firefighter fatalities, accounting for around half of all firefighter deaths each year. The NVFC launched the Heart-Healthy Firefighter Program in 2003 to combat this alarming trend through education, awareness, and resources. The Heart-Healthy Firefighter Program promotes fitness, nutrition, and health awareness for all members of the fire and emergency services, both volunteer and career.

Resources available through the program include:

- Resources for starting and implementing a health and wellness program in your fire/EMS department.
- Trade show booth with free health screening and resources.
- Health and Wellness Advocate Workshop to train department personnel to start a department health program and motivate your fellow responders to focus on health and fitness.
- Fired Up for Fitness Challenge, an interactive tool to motivate first responders to get active.
- Information on heart health, fitness, nutrition, and lifestyle choices.

- International Fire/EMS Safety and Health Week, held each June in partnership
 with the IAFC to encourage departments and personnel to focus on safety and
 health topics especially critical to the fire and emergency services.
- Health and wellness challenges to help motivate your department.
- Interactive message board to connect with other first responders looking to become and stay heart healthy.
- Webinars to educate first responders about important health and wellness topics.
- Securing Sponsors for Department Health and Wellness Programs, a toolkit for finding funding to support a wellness program in your department.
- Heart-Healthy Firefighter Resource Guide.
- Heart Healthy Firefighter Cookbook.
- Smoking cessation resources.
- Success stories from first responders from across the country who have succeeded in getting heart healthy.

Visit <u>www.healthy-firefighter.org</u> to find the resources and tools to keep you and your department heart strong and ready for the next call.

U.S. Fire Administration Critical Health and Safety Issues in the Volunteer Fire Service December 2016

https://www.usfa.fema.gov/downloads/pdf/publications/critical_health_and_safety_issues.pdf

NIOSH alert: preventing fire fighter fatalities due to heart attacks and other sudden cardiovascular events. http://www.cdc.gov/niosh/docs/2007-133/. NIOSH [2007].

<u>Firefighters and on-duty deaths from coronary heart disease: a case control study</u>. Environ health: a global access science source. 2:14. http://www.ehjournal.net/content/2/1/14</u>. Kales SN, Soteriades ES, Christoudias SG, Christiani DC [2003]

Firefighter Health and Wellness Initiatives.

http://firehouseexpo.com/z-pdf/2012/handouts/Firefighter-Health-and-Wellness-flyer-Bill-Troup.pdf

Does Your Fire Department Have A Health & Wellness Program?

Fire Engineering, October 25, 2012. http://www.fireengineering.com/articles/2012/10/does-your-fire-department-have-a-health-wellness-program.html

Wellness And Fitness: Is It About Time For A Mandatory Program? *Fire Engineering,* January 16, 2013. By Peter Bryan. http://www.fireengineering.com/articles/2013/01/firefighter-wellness-and-fitness-is-it-about-time-for-a-mandator.html

Developing a Wellness Program, By Michael Ong, May 4, 2011. https://www.firefighternation.com/2011/05/04/developing-a-wellness-program/

State Fire Marshal Alert: Cardiovascular Incidents Lead On-Duty Related Incidents of Firefighter Deaths

State Fire Marshal's Office website: http://www.tdi.texas.gov/fire/fmloddinvesti.html

The State Fire Marshal's Office has investigated more than 88 on-duty fatalities of firefighters in Texas since October 2001. These investigations have revealed some vital facts every Texas fire official needs to know.

Cardiovascular incidents, heart attacks, stroke, or related cardiac problems have caused 36 of the 88 deaths investigated through the end of fiscal year 2018. Of the total 88 fatalities investigated, there were 36 fire ground related incidents resulting in 52 firefighter fatalities, 36 medical related incidents resulting in 33 heart attack and 3 cardiovascular (stroke) firefighter fatalities, and 9 motor vehicle accident related incidents resulting in 9 firefighter fatalities. Of the 36 fire ground related deaths, there were 5 multiple fatality incidents resulting in 21 firefighter fatalities (Houston: 5, West: 10, Bryan: 2, Houston: 2, and Noonday: 2).

Every fire department (paid and volunteer), fire chief, and firefighter must take the initiative in reducing the number of on-duty heart attack deaths.

When it comes to physical fitness and overall health, every little bit of effort counts.

Extensive research has shown that you can improve your overall health, thus preventing disease and premature death, by making small adjustments and improvements in your daily activities, including physical activity, nutrition, and behavior.

Five chronic diseases associated with obesity:

- heart disease
- cancer
- stroke
- chronic obstructive pulmonary disease (e.g., bronchitis, emphysema, asthma)
- diabetes

They account for more than two-thirds of all deaths in the United States. They claim more than 1.7 million American lives each year and hinder daily living for more than one of every 10 Americans. More than 100 million Americans live with chronic disease, and millions of new cases are diagnosed each year.

These chronic diseases are among the most prevalent and deadly health problems facing our nation, but some of them are very preventable. Firefighters and their families can take simple,

affordable steps to work physical activity, good nutrition, and behavior changes into their daily routine. You don't have to become a marathon runner or buy a health club membership to improve personal fitness. Your health will improve with modest but regular physical activity and better eating habits.

There are four keys for a healthier America:

- Be Physically Active Every Day.
- Eat a Nutritious Diet.
- Get Preventive Screenings.
- Make Healthy Choices.

The State Fire Marshal's Office also recommends that fire departments and firefighters adopt physical exercise regimens that will best prepare firefighters for the strenuous, often prolonged physical effort involved in fighting fires.

Here are some excellent resources:

Volunteer Fire Service Fitness and Wellness Program: The U. S. Fire Administration (USFA) and the National Volunteer Fire Council (NVFC) have created the Volunteer Fire Service Fitness and Wellness Project, a partnership initiative to reduce loss of life among volunteer firefighters from heart attack and stress. USFA is a part of the Federal Emergency Management Agency. You can find out more at http://www.usfa.fema.gov/downloads/pdf/publications/fa_321.pdf.

The National Fallen Firefighters Foundation (NFFF) and Pennell Corporation have established a web site, <u>www.everyonegoeshome.com</u>, for the nationwide Firefighter Life Safety Initiatives program.

Firefighter Health and Wellness Initiatives

The leading cause of firefighter on duty deaths are stress and cardiac-related, which historically have accounted for nearly half of all firefighter fatalities. Effective health and wellness programs can reduce this number one cause of firefighter deaths. To support this, the U.S. Fire Administration (USFA) has developed the following partnerships and programs:

Fire Service Joint Labor Management Wellness-Fitness Initiative

USFA partnered with the International Association of Fire Chiefs (IAFC) and the International Association of Fire Fighters (IAFF) to support expanding the use of the *Fire Service Joint Labor Management Wellness-Fitness Initiative* to additional fire departments. The *Initiative* was developed by the IAFC and the IAFF to enhance firefighter wellness, health, and safety and has been implemented successfully in many fire departments throughout the United States. With the IAFC, USFA supported an ongoing program to develop best practices in firefighter health and wellness for the fire service. The partnership with the IAFF supported the development of the Peer-Credentialing Program for fire department Peer Fitness Trainers that is recognized by the American Council on Exercise (ACE), the largest nonprofit fitness certification and education provider in the world. Many fire department Peer Fitness Trainers have been certified through this program.

Volunteer Fire Service Fitness and Wellness

Partnership efforts between USFA and the National Volunteer Fire Council (NVFC) involved research and development of effective health and wellness programs aimed at the needs of volunteer firefighters. Through this partnership, the *Health and Wellness Guide for the Volunteer Fire and Emergency Services* was developed and updated.

Study of Cancer among Firefighters

USFA and the National Institute for Occupational Safety and Health (NIOSH) partnered on a study to examine the potential for increased risk of cancer among firefighters due to occupational exposures from smoke, soot, and other contaminants in the line of duty. This will be a formal epidemiological study with medical oversight. This study is intended to fill gaps in current knowledge to further characterize the potential cancer risk associated with these exposures.

Study of Fire Service Respiratory Disease

USFA partnered with the IAFF in support of their study of *Respiratory Disease and the Fire Service* that provides the results of a long-term initiative aimed to enhance the occupational health of the fire service. The goal of this project is to research the long-term effects and post exposure mitigation of occupational respiratory exposure to firefighters and develop a report based on this research. This effort involved renowned experts in respiratory medicine. This study also assisted in recognizing and quantifying the impact of, and need for, strategies and programs to deal with occupational respiratory disease for firefighters, their families, and fire departments.

Emergency Incident Rehabilitation

USFA, in partnership with the IAFF, updated the *Emergency Incident Rehabilitation* manual, incorporating the latest information on the care of firefighters engaged in emergency scene and training operations through effective rehabilitation. The manual also provides case studies illustrating the need for effective emergency responder rehabilitation. An effective emergency incident rehabilitation program supports firefighter health and wellness.

Study of the Impact and Mitigation of Sleep Deprivation in Emergency Services

USFA worked with the IAFC in studying the impact of sleep deprivation on human performance and developing mitigation measures related to the fire and emergency services. It examined this issue and its impact on cardiac stress as well as human performance issues such as vehicle operations, firefighting, providing medical care,

and managing and commanding incidents. This research resulted in the report and accompanying video presentation—*The Effects of Sleep Deprivation on Firefighters and EMS Responders.*

Study of Emerging Health and Safety Issues of the Volunteer Fire Service

This partnership effort between USFA and the NVFC involved the study of emergent issues related to firefighter occupational health and safety occurring in the volunteer fire service, and developed a comprehensive report detailing programs and strategies on how firefighter fatalities among volunteers may be reduced.

Further information on the projects listed above may be found on the USFA website at:

https://www.usfa.fema.gov/operations/ops_wellness_fitness.html

National Safety Culture Change Initiative

FA-342/April 2015

U.S. Fire Administration Mission Statement

We provide national leadership to foster a solid foundation for our fire and emergency services stakeholders in prevention, preparedness, and response.

National Safety Culture Change Initiative

Study of Behavioral Motivation on Reduction of Risk-Taking Behaviors in the Fire and Emergency Service

Developed by the International Association of Fire Chiefs through a partnership with the U.S. Fire Administration

April 2015

Table of Contents

Project Team	
Working Group	1
Staff	
Executive Summary	5
Contributors	
Introduction	
Understanding the Fire and Emergency Service Culture	
What Drives Firefighter Behaviors?	
Examples of Inappropriate Risk Behaviors	
What Is Culture?	
Aspects of the Culture	
·	
Cultural Change	
Toward a Safety Culture	
Areas of Focus for Cultural Change in Fire and Emergency Services	
Situational Awareness	
Individual Responsibility	15
Leadership	16
Health and Wellness	16
Training	17
Initial Firefighter Training	18
Officer Training	19
Emergency and Personal Vehicle Operation	20
Factors Influencing Safe Emergency Response	
Seat Belt Use	
Recruiting	22
Environmental Factors	
Summary	23
Riblingraphy	21

This page intentionally left blank.

ii April 2015

Project Team

Working Group

Cumberland Valley Volunteer Firemen's Association (CVVFA) — Jim Watson

International Association of Fire Chiefs (IAFC) Safety, Health and Survival (SHS) Section — I. David Daniels

International Association of Fire Fighters (IAFF) — Patrick Morrison

National Fallen Firefighters Foundation (NFFF) — Victor Stagnaro

National Fire Protection Association (NFPA) — John Caufield

National Institute for Occupational Safety and Health (NIOSH) — Murrey Loflin

Staff

Facilitator — Courtney Bulger

Project Manager — Vicki Lee

Project Manager — Melissa Hebert

National Volunteer Fire Council (NVFC) — Sarah Lee

North American Fire Training Directors (NAFTD) — Eriks Gabliks

NAFTD/University of Illinois Fire Service Institute — Brian R. Brauer

U.S. Fire Administration (USFA) — Bill Troup, Project Officer

USFA — Brad Pabody

USFA — Burt Clark, Ed.D.

Johns Hopkins Bloomberg School of Public Health — Keshia M. Pollack, Ph.D., M.P.H.

Technical Writer — William Stipp

IAFC National Programs — John Woulfe

This page intentionally left blank.

Executive Summary

Controlling and extinguishing hostile fire comes at a great cost to human life and secondarily at great financial expense. Despite improvements in personal protective equipment (PPE), apparatus safety devices, more availability of training, greater emphasis on firefighter health and wellness, and decreases in the number of fires and dollar loss due to fires, the rate of on-duty firefighter death and injury has remained relatively unchanged in the past four decades. The National Safety Culture Change Initiative (NSCCI) project is

a joint partnership of the U.S. Fire Administration (USFA) and the International Association of Fire Chiefs (IAFC) aimed at identifying both positive and negative culture and climate found in the American fire and emergency service community. NSCCI, through this study and its website, www. ffsafetyculture.org, and other project efforts, will identify adverse behaviors and recommend changes to both culture and climate for occupational safety and health within the fire and emergency service.

Contributors

The organizations and individuals who contributed to this paper were selected as a representative cross section of the fire service. The intent was to capture both the breadth of the fire service, encompassing the different delivery models of emergency response, and the depth of the fire service by including groups that had agendas

to look at the specific needs of the fire service. Additionally, the individual experiences of those connected to the creation of this paper, both within and outside of the fire service, provided a rich backdrop for discussion and comment of diverse viewpoints throughout the development of the paper.

Introduction

The National Fallen Firefighters Foundation (NFFF) has asserted that the culture of the fire and emergency service is a major contributor to the fatal trend in firefighter health and safety (Siarnicki, 2010). This culture has not been concisely defined, but literature suggests both that it exists as a stand-alone concept and that it has unique characteristics that are uncommon to nonuniformed professions. Soeters, a leading scholar in the organizational culture of military and emergency service units, states that the peculiarities of organizations, such as the fire and Emergency Service, "justify the special attention of researchers to the culture and identity of these ... organizations" (Soeters, 2000, p. 466). An understanding of the culture can be used to develop safer practices to reduce the number of firefighters killed and injured each year.

This effort is directly related to three of NFFF's 16 Firefighter Life Safety Initiatives (FLSIs). FLSI 1, which states: **Define and advocate the need for a cultural change within the fire service relating to safety; incorporating leadership, management, supervision, accountability, and personal responsibility (NFFF, 2011), is an overarching initiative, acknowledging that the organizational culture of the fire service must undergo a change to accept the other 15 recommendations. Without understanding the culture within a fire and emergency service organization, it is likely that changes called for in the other 15 initiatives cannot be successfully implemented or sustained.**

Initiatives 2 and 6 are also very relevant to this project. Since 50 percent of line-of-duty deaths (LODDs) are attributed to cardiovascular events and one-third of these deaths are in people with known cardiac histories, health and safety of agency members is a controllable risk factor (NFFF, 2011, p. 13). Initiative 6 encourages implementation of and adherence to existing medical and fitness standards, while Initiative 2 focuses on empowerment of all members of a department to be involved and engaged with departmental health and safety while around the station, while responding to and returning from calls for service, and while operating at emergency scenes.

The initial research phase of this study was directed toward clearly identifying and defining the problem. There is widespread acceptance of the presumption that behavioral issues contribute to both firefighter injuries and LODDs and that some type of cultural change is needed to alter the perceptions of acceptable and unacceptable risks. The objective of the research effort is to narrow the focus to identify the particular behaviors that need to be addressed.

The NSCCI project is aimed at identifying the aspects of fire and emergency service culture that contribute to preventable occupational illnesses, injuries and fatalities and subsequently changing those cultural norms that either promote or tolerate excessive risk behaviors. The Project Team developed this document based on the perspec-

tive that the expansion of a more appropriate safety culture should not be seen as a challenge to the overall fire service nor contrary to the mission of saving lives and protecting property. This document focuses on integrating safety into the fire service culture without diminishing any of its existing positive aspects.

It should be mentioned that understanding fire and emergency service culture as it relates to fire prevention activities is also important, although this project does not include that perspective.

Throughout this paper, the term fire and emergency service is used to broadly capture any type of emergency response organization that responds to fires or other crises that erupt in

communities throughout the U.S. An effort was made to be inclusive of nonfirefighting areas, but there is little literature available that looks broadly at emergency services that are not directly engaged in firefighting. However, a study produced under a cooperative agreement between the National Highway Traffic Safety Administration (NHTSA), with support from the Health Resources and Services Administration's (HRSA's) Emergency Medical Services for Children (EMSC) program, and the American College of Emergency Physicians (ACEP) looks specifically at an "EMS Culture of Safety" and can be accessed at http://www.emscultureofsafety.org/wp-content/ uploads/2013/10/Strategy-for-a-National-EMS-Culture-of-Safety-10-03-13.pdf.

Photo by Ron Moore, Courtesy of Cornbelt (Illinois) Fire Protection District

Understanding the Fire and Emergency Service Culture

From the origins of an organized fire and emergency service in the U.S. through the early 1970s, very little attention was directed toward firefighter safety (Granito, 2003); the inherent risk factors of firefighting and emergency operations were recognized and simply accepted as unavoidable occupational hazards. Generations of firefighters were subjected to extreme risks, in most cases because their mission was considered essential and there were few alternatives available to them. The image of the firefighter, which is the foundation of the fire and emergency service culture, was built around selfless heroism — the firefighter is always ready to face any risk and, if necessary, to make the supreme sacrifice in order to save lives and property.

Serious efforts to address firefighter safety began during the 1970s and expanded significantly through the 1980s and 1990s, coinciding in part with major advances in protective clothing and equipment, as well as the development of more effective tools and procedures that allowed for fire suppression operations to be conducted with better calculated risks to the firefighter. During that time period, operational procedures began to incorporate firefighter health and safety as primary objectives, on a par with saving civilian lives and as a higher priority than saving property (Linke, 2008). National Fire Protection Association (NFPA) 1500, Standard on Fire Department Occupational Safety and Health Program was published in 1987 as the first consensus standard to address occupational safety and health for organizations delivering emergency services.

The NSCCI project is directed toward this particular aspect of the effort to further reduce LODDs, as well as decreasing occupational injuries and illnesses within the fire and emergency service. It is intended to identify and examine the factors that cause or influence firefighters to make decisions and engage in actions that involve unnecessary and avoidable risks, which often places their own lives, and potentially the lives of their fellow firefighters, in danger when there are less dangerous options available. Expressing the concept in terms of risk management, this would refer to situations where the potential gain is out of balance with the potential loss.

This paper and its proposed strategies for reducing risk-taking behaviors in the fire and emergency service are based on a literature review, focused discussions, and the experiences and collective knowledge of members of the Project Team and reviewers.

What Drives Firefighter Behaviors?

U.S. society as a whole may contribute to the risk behaviors that are demonstrated within the fire service. Communities expect an urgent and timely response to emergencies and disasters with fully trained individuals arriving on adequately staffed apparatus. However, public knowledge of the complexities and challenges of building, maintaining and delivering such service capabilities is often transparent or invisible to those funding the services until the system fails to meet public expectations. Some fire and emergency service organizations do not have the resources to implement advanced training programs or provide training beyond that which is minimally required for each position.

Firefighters who are questioned in relation to their high-risk behaviors often refer to either public or organizational expectations of selfless heroism. Such perceptions are consistent with the popular image of the firefighter as a daring individual who is willing to risk life and limb to save the life of a total stranger and who is lauded for doing so.

Those with a traditional outlook often express disagreement with the emphasis that has been directed toward "acceptable risks" and "rules of engagement," claiming that they promote nonaggressive and ineffective operations. The opposing viewpoint asserts that there are times when it is appropriate to be boldly aggressive and times to be intelligently cautious. The focus of this paper is to seek out areas where the level of safety in the provision of a fire and emergency service organization can be improved without diluting or lessening the critical mission of service delivery.

Examples of Inappropriate Risk Behaviors

Firefighters are routinely called upon to deal with situations that involve risks that could result in their death or injury or contribute to an occupational illness or disability. Several of these risk factors are inherent to the nature of the work that firefighters perform; however, the level of exposure to those risks varies depending on decisions that are made and actions that are taken — or not taken — when faced with a particular situation and set of circumstances. A general risk management philosophy in the fire service is risk

a lot to save a lot, risk a little to save a little, and risk nothing to save nothing (Linke, 2008).

Most of the discussion of risk exposure is written in the context of structural firefighting, where the concepts of offensive versus defensive strategy are easily defined. Offensive strategy places firefighters in close contact with the fire, inside the burning building, and involves a certain level of inherent risk. Defensive strategy keeps firefighters outside, in what should be safe exterior locations, to minimize risk. This concept requires some extrapolation to be applied to other emergency responses and scenes.

While the Incident Commander's (IC's) decisions establish a theoretical level of acceptable risk that applies to every individual involved in an incident, at times, individual firefighters knowingly or unknowingly expose themselves to higher levels of risk than the IC has deemed acceptable. This is a particular problem when individual perceptions of acceptable risk are different from the IC's perceptions.

Fire and emergency service organizations should concentrate on implementing and demonstrating an effective and measurable model of firefighter training. This model supports and emphasizes the behaviors learned during initial firefighter training (recruit training) and continuously builds upon those experiences to build advanced skill sets throughout their service as a firefighter/EMS provider. This training should subscribe to the philosophy that health and safety are the capstone of any model. The focus areas of risk behavior modification are education, training, health and wellness.

With regard to vehicle operations for both personally owned and agency-owned vehicles, fire and emergency service organizations should concentrate on implementing and demonstrating an effective and measurable model of driver/operator training that advances skill sets throughout tenure as a firefighter, ensures quality, and provides for driver/operator accountability. The focus areas of risk behavior modification are driver capability, quality assurance and accountability.

Fire and emergency service organizations must also focus on moving toward compliance with national standards for health and wellness, fitness for duty, and emergency scene rehabilitation.

In each of these cases, scenarios can present themselves where emergency responders act without a full understanding of the potential scope and fallout from their actions, leading to illness, injury or death that is out of alignment with the potential value of the chosen action.

What Is Culture?

To change the undesirable components of fire and emergency service culture, one must first understand the broad construct of culture and then apply this framework within the fire and emergency service. Schein describes the culture of a group as the "basic, shared, assumptions" learned by a group as it solves problems (2004, p. 17). He indicates that when this problem-solving is successful, the methods are taught to new members as correct solutions to the problems (Schein, 2004). Hofstede refers to these methods and assumptions as the "collective programming of the mind" (2001, p. 1). Kluckhorn similarly defines culture as "patterned ways of thinking," based upon traditional and historical ideas (1951, p. 86). All three of these definitions identify culture as a process that occurs in the individual, based upon learned behaviors that are influenced by a group and the group's history.

Culture is reflected in a group's internal characteristics, its character, and its daily existence (Goodman, Zammuto, & Gifford, 2001). It is influenced by organizational history, policies, uniforming, facilities, vocabulary, leadership and management within an organization (Compton, 2003). Uniformed professions, such as police departments, fire and emergency service organizations, and military units, have such unique cultures unto themselves that they have characteristics, such as a sense of duty and allegiance, that are not found in such a strong degree in other professions.

"Culture can be difficult to substantively define, but culture truly describes how things are done in the [fire and emergency service] organization" (Compton, 2003, p. 24). This comment may allude to how entwined the culture of the fire and emergency service organization is with all aspects of the operations and delivery of services. The culture impacts how the firefighters interact with each other, from where a firefighter or officer sits at the dinner table, which seat they can occupy in the TV room and when they may sit down, where they sit on emergency apparatus and what their roles at emergency scenes will be, to how they may interact with other members of the company. While these rituals and values have some commonality across the different fire and emergency service organization types and sizes throughout the U.S., it would be both inaccurate and irresponsible to assume that these traits and values are reflected identically in all fire and emergency service organizations. However, since the fire and emergency service functions as individual organizations within the framework of a larger organizational culture, there should be some common themes and values that are present throughout most fire and emergency service organizations.

Uniformed organizations, such as fire and emergency service organizations, represent "specific occupational cultures that are relatively isolated from society" (Soeters, 2000, p. 465). Archer (1999) supports this with his assertion that the fire and emergency service is "characterized by its strong culture," which includes the use of a uniform, hierarchical command structure, promotion solely from within the existing ranks, and long-standing traditions (p. 94). Fire and emergency service organizations further differ from other organizations/ businesses in that they are exposed to uncommon levels of danger, work unusual or shift schedules, require a great deal of physical and mental stamina from their members, and can recall staff and cancel their prescheduled leave due to emergencies or staffing shortages (Soeters, 2000).

This culture of the fire and emergency service has evolved through a complex process of group learning (Thompson & Bono, 1993). This group learning occurs during training, emergency responses, downtime around the fire station, and informal activities, such as cookouts, meals at the department, storytelling, and watching TV. In some cases, in the fire and emergency service, methods espoused as solutions may be incorrect, but they are perpetuated because they are viewed as traditions (Gasaway, 2005). Pessemier supports this in his 2008 discussion of improving fire and emergency service organization safety by stating:

"Normalization of unsafe practices can also occur as a result of the fact that other individuals take the same [incorrect or unsafe] actions. If, in general, nothing bad happens as a result of unsafe practices, and if everyone else in the organization participates in the same practices, then these practices become part of the normal and accepted way of accomplishing tasks. As a result, Fire and Emergency services organization history and traditions can create a culture that is difficult to change" (2008b, p. 3).

In June of 2007, nine firefighters from Charleston, South Carolina, were killed in a fire in a large furniture store. The analysis of operations of the Charleston Fire and Emergency Services organization revealed that, among many factors, "The culture of the Charleston Fire Department promoted aggressive offensive tactics that exposed firefight-

ers to excessive and avoidable risks and failed to apply basic firefighter safety practices." As a result, in the initial report on changes that need to be accomplished in the department to prevent a reoccurrence of a similar tragedy, one of the highest priority items is a change to the department's "Culture and Leadership" (Routley, 2007).

In addition to the number of fatalities, it is important to consider the number of on-the-job injuries that firefighting contributes to annually. NFPA reports that in 2012, there were 69,400 job-related injuries. Peterson identifies over 95,000 injuries per year (2010), and Houdous, Pizatella, Braddee and Castillo support this with a calculation of 90,000 injuries per year, with an increasing rate of injury in the fire and emergency service (2004). Brennan (2011) extracted from NFPA the number of on-scene emergency injuries to be 32,205 in 2009 and compared these to the number of members of the U.S. military who were wounded in combat. In the period from October 2001 through August 2008, there were 30,568 U.S. service members wounded in action — less than the number of firefighters injured in the single year 2009 (Brennan, 2011). It should be mentioned here that the likelihood of all on-the-job injuries and related illnesses being reported consistently is suspect and that the numbers are probably higher.

Aspects of the Culture

Being service-focused, having a strong identity and role in the community, and being willing to accept risk are all positive traits when they exist in an environment that is safety-focused (Compton, 2003).

Before discussing some of the negative traits that have been documented about the culture of the American fire and emergency service community, one must remember that no culture is all good or all bad. Traits offered in this paper are to further the point that a change is necessary, so more of the negative traits are elucidated. Additionally, there are more examples in the peer-reviewed literature of the failures of the culture, as these events tend to receive more attention than the daily successes and examples of positive action. According to Brunacini, the original firefighters in colonial America in 1740 were selected to protect their community based on their ability to do three things: (1) They had to be **fast**, to get to emergencies in a minimum amount of time; (2) they had to be willing to take great personal risks to get **close** to the fire; and (3) they had to be able to put water on the fire, to get the fire wet to extinguish it (1998). Brunacini identifies these

three traits as the core tenet of even the modern firefighter's culture, even though actions should be more measured and risks should be better assessed in this modern age. Firefighters should operate in full protective clothing and within an accountability system in the performance of their duties (1998). Having a fire and emergency service that embraces the notion of "fast/close/wet" may misalign with the goal of operating safely. Clark furthered Brunacini's message by adding that if firefighters continue to ascribe to fast/close/wet as the way to respond to fire emergencies, the inevitable result is risk, injury and death (2011).

Firefighter fatalities are closely linked to unsafe practices and a fire and emergency service culture that is not fully committed to safety (Cross, 2010). This lack of commitment to safety is not a new problem in the fire and emergency service. In 1973, the National Commission on Fire Prevention and Control published the landmark study "America Burning." This initial look at the fire problem in the U.S. revealed that 6,200 people, including firefighters, died annually as a result of hostile fire (Bland, 1973). Additionally, over 100,000 injuries were reported annually, with a dollar loss of over \$10 billion (in 1973 dollars) (Bland). The report estimated a nationwide rate of 300 fires per hour, which translates to over 2.7 million fires annually. In 2007, there were less than 1.6 million fires in the U.S., leading to 3,430 fire deaths and a property loss of \$14.6 billion (Federal Emergency Management Agency (FEMA), 2008). This represents a 44 percent reduction in the number of civilian deaths from fire, and a 40 percent reduction in the number of fires overall. During that same time period, there was no reduction in the number of firefighters who died in the performance of their duties.

In 2011, Kunadharaju, Smith and DeJoy conducted an analysis of 189 National Institute for Occupational Safety and Health firefighter fatality reports for the time period 2004-2009. They found that there were four higher-order causes of firefighter death and injury: insufficient resources, inadequate preparation, insufficient incident command structure, and suboptimal personnel readiness (Kunadharaju, Smith & Deloy). They concluded that these four higher-order causes "may actually be tapping the basic culture of firefighting ... the job must get done, get done as quickly as possible, and with whatever resources are available" (p. 179). They also advocated for additional research in the area of defining the culture of the fire and emergency service.

As has been shown for other occupational safety problems, the true root causes of many firefighter fatalities may be traceable back to basic cultural attributes (Pidgeon & O'Leary, 2000). The focus on culture as a factor in firefighter fatalities is not new, with IAFC, NFFF and the International Association of Fire Fighters being three high-profile organizations identifying culture as a critical area for change within the fire and emergency service. Various task forces and panels have called for culture change within firefighting organizations. What is new here is an initial attempt to probe for cultural symptoms using a very important and valuable data source: firefighter fatality investigations. Although the conclusions presented in the present research are not in any way definitive or final, they do highlight the importance of cultural factors in firefighter line-of-duty fatalities and suggest some specific factors that should be examined in future research.

David Archer concurs with this description of the fire and emergency service culture, and elaborates on what he calls the discipline code, which "is highly prescriptive, promotes ... from within the organization only ... has long standing traditions, and is predominantly white-male dominated" (1999, p. 1). He further discusses that this system is perpetuated through the cultural processes that individuals are introduced to when they go through the paramilitary-style initial training.

Baigent identified five key areas of culture that are common in interactions between firefighters (2001, p. 7):

- 1. Ostracizing anyone different.
- 2. Ostracizing anyone who doesn't conform.
- 3. Bullying and threatening anyone who resists the dominant group.
- 4. Excluding outsiders from fire station life.
- 5. Frequent joking as an instrument to continue bullying.

Brunacini's description of the treatment of new firefighters who don't follow the direction of the older firefighters is consistent with Baigent's criteria.

Lewis, a scholar studying issues of gender and racial inequity in firefighter selection and training, juxtaposes the image of firefighters as heroes against the culture of firefighting: "Firefighters around the world are heroes in the hearts and minds of the public. ... However, research into the culture of firefighting worldwide has also shown disturbing and quite 'uniform' characteristics have been normalized by many under the guise of tradition" (2004).

Phillip Schaenman conducted a study of over 1,000 firefighters' attitudes and perceptions regarding safety in the wildland firefighting environment. Respondents described the culture as being one "of hardship, adventure, close friendships, and commitment; experience over rank ... enjoys stories of conquest and danger," and pride at how different a wildland firefighter's life is from the rest of society (1996, p. 193). One respondent described the culture as one with "long traditions" (p. 196). These varied descriptions of aspects of the culture make up the tightly woven fabric of the American fire and emergency service community that bears closer investigation and analysis. Organizational cultures such as this are more complicated and have a greater impact on decision-making than insiders to the culture typically realize (Vaughan, 1997). Organizational values within the fire and emergency service are the "shared standards and core beliefs that guide decisions and actions within" the fire and emergency service (Cochran, 2006, p. 454).

Cultural Change

It is evident that many interrelated factors must be addressed in order to produce a significant change in outcomes in terms of reducing line-of-duty injuries and deaths and improving overall firefighter safety and health. The existing fire and emergency service culture, as it relates to occupational safety and health, was identified as both a cause and an effect of the current situation. A cultural change would set the stage for many incremental changes that would produce the desired positive impact.

Cultural researcher Edgar Schein identified the fundamental components of an organizational culture as a system of shared behaviors, values, assumptions and beliefs (2004). He describes these components as a three-layer system:

- Assumptions and beliefs.
- Values.
- Behaviors.

This model begins with a system of shared assumptions and beliefs that provides the foundation for organizational values. Those values, in turn, create expectations for acceptable and unacceptable behaviors. To apply this model to one particular aspect of the fire and emergency service, it could be stated that firefighters tend to attack fires in a manner that is bold and aggressive because their value system provides positive recognition for this type of behavior. These values are based on the belief that the mission of the fire and emergency service is to extinguish every fire as quickly as possible and the assumption that the best way to control a fire is to hit it hard and fast.

All three layers of this model were described by the symposium participants in the discussions that produced the 16 FLSIs. It was noted that unsafe attitudes and behaviors often prevail in spite of the common knowledge that there are less risky alternatives that could result in fewer deaths, injuries and illnesses. In fact, it was noted that efforts to promote health and safety were often met with resistance and scorn, reinforcing the notion that they created conflict with established attitudes, assumptions and values.

The existing system of assumptions and beliefs reinforces particular values:

 Every LODD is automatically labeled as heroic, no matter the circumstances (versus an occupational fatality that is preventable).

- Recommendations to follow standard operating procedures and exercise appropriate caution are described as cowardly.
- The urgency of quickly arriving at the scene of an emergency justifies driving in a manner that endangers the lives of other motorists and pedestrians who may be encountered en route, as well as the responders themselves.

The same sense of urgency:

- Justifies attempting to don protective clothing and equipment en route as opposed to being properly seated and belted in an approved riding position.
- Allows inadequately trained drivers to operate emergency vehicles.
- Allows poorly designed and poorly maintained vehicles to be operated.

The three-layer model suggests that cultural change has to occur progressively, beginning with changes in assumptions and beliefs that gradually bring about changes in the values that are accepted and shared by the individuals within an organization. Changes in the organizational values legitimize and promote changes in behavior. These behaviors need to be reinforced by an ongoing commitment to safety culture at the organizational level and among individual firefighters and their crews. This three-stage process is described as the most natural and effective manner of accomplishing a cultural change.

The application of this approach to the firefighter safety issue suggests that the first priority should be to convince individuals, companies, departments, and society as a whole that the current rates of death and injury are unacceptable and that operating with a higher regard for safety would not compromise the mission of controlling fires and saving lives. The large-scale acceptance of these new assumptions and beliefs would lead to a change in the value system so that being safe would be given equal weight to being effective in controlling fires and saving civilian lives. The new values would encourage firefighters to be more careful and to stop engaging in reckless behaviors that lead to preventable deaths and injuries.

It is also possible to work in the opposite direction, from the top down, although this approach is much more likely to encounter resistance. Every fire chief has the ability to establish rules and regulations that require changes in behavior within his or her own fire and emergency service organi-

zation. For example, the consistent enforcement of a strict policy requiring the use of seat belts in fire apparatus would probably, over a period of time, result in a change of values — at least with regard to seat belt use. Ultimately, the members of the fire and emergency service organization would come to accept and integrate seat belt use as part of their organizational culture.

Members of the fire and emergency service, especially fire chiefs, must align their personal values with the organizational values, and they must model these values (Cochran, 2006). The leader must then ensure alignment of values within the organization in order to ensure a strong work ethic; appropriate treatment of stakeholders; a cooperative atmosphere; teamwork; and high levels of dedication, discipline and commitment (Cochran). Therefore, not having a description of the values or culture makes it difficult, if not impossible, for a leader to initiate organizational change, since there is a limited baseline upon which to center the change interventions.

The difference between the two approaches is that the bottom-up strategy should enable much more comprehensive changes in behavior once the new values become accepted, especially since firefighters would be involved with identifying solutions (and doing so could bolster their buyin). The top-down approach is likely to encounter resistance for every individual change in behavior that is introduced. The large-scale cultural adjustment may eventually be accomplished; however, it is likely to be a slow and lengthy process.

The statement within FLSI 1 that the cultural change must incorporate leadership, management, supervision, accountability and personal responsibility is an expression of the need to

address the process with a unified effort at every level in order to accomplish the objective, working from the bottom up and from the top down. The successful insertion of occupational safety and health into the fire and emergency service value system should support numerous behavioral changes that could lead to a significant reduction in occupational deaths, injuries and illnesses.

Resistance to Change

Resistance to change, even change initiated internally, is often cited as a significant characteristic of fire and emergency service culture. This factor is often expressed with a mixture of pride and amusement by slogans such as "200 years of tradition unimpeded by progress" (Fire Department of New York (FDNY)).

Resistance to external influences is sometimes described as a particular characteristic of the American fire and emergency service culture. Although it is evident that more and more external influences are demanding compliance and adjustment, particularly in relation to occupational safety and health, there is no question that the fire and emergency service culture strongly resists being told what to do.

These factors underline the point that the type of cultural change that is the target of FLSI 1 will require significant adjustments to some of the values and beliefs that are commonly associated with fire and emergency service culture. This can only be accomplished by convincing firefighters at every level that the change is both desirable and necessary, and that the adjustments may be accommodated without compromising any of the highly valued aspects of fire and emergency service culture.

Toward a Safety Culture

The culture of the American fire and emergency service community is a contributing factor to the high incidence of injury and death. Daniels (2005) asserts that until the fire and emergency service is willing to make substantial changes in training, procedures, equipment and recruiting, this fatal trend shall continue. In some cases, the injurious behaviors may have originated as a bad habit that evolved slowly over time into a tradition, slowly injecting a poor practice or dangerous procedure into the fire and emergency service organization over generations (Gasaway, 2005). Firefighters may engage in an unsafe act, thinking it is the correct way to operate or behave because the unsafe act or technique was how they were originally instructed (Gasaway). Storytelling and instruction from an older generation of firefighters to a younger generation of firefighters is a trait of the tightknit culture. This can be advantageous when the information is appropriate and relates to current department operating guidelines and situations, but it can be detrimental when there is no "filter" to ensure that the hand-me-down messages are safe and effective (Schaenman, 1996).

An additional issue cited by Pessemier is that "the U.S. Fire and Emergency Service does not have an institutionalized methodology for managing safety" (2008b, p. 1). He identifies this as a conflict between the organizational mission of the fire and emergency service and the view of safety as completing demands, instead of synergistic values.

Schneider (1973) suggests that cultures should be "for" something, for example "for service" or "for safety." One possible solution to the American fire and emergency service community's dilemma of how to change this culture is to develop an understanding of what it is and then refocus it to be "for" a different value or concept. Slight shifts in the practices within the fire and emergency service are likely to be more successful than large, sudden change (Daniels, 2005b). Schaenman identified that firefighters recognize the importance of safety, but they aren't always sure about how to accomplish an activity safely (1996). Incrementally moving the current values, and therefore the culture of the fire and emergency service, toward a safety culture can provide the framework and strategies for how to address both of these potential issues.

A safety culture reflects the values, norms, assumptions and expectations regarding safety (Mearns, 1999). A company's safety culture is expressed by management's safety practices, which

are reflected in the workplace safety climate (i.e., employees' perceptions, attitudes and beliefs about risk and safety) (Mearns, 1999). A positive safety culture, as part of comprehensive safety improvement interventions, has been shown to influence safety behaviors by maximizing employee motivation and improving safety knowledge, which, in turn, helps to improve employee compliance, thereby resulting in safer behaviors and fewer injuries.

Pessemier (2008a) furthers this notion of moving toward a safety culture in the fire and emergency service. For illustration, the Phoenix Fire Department has shifted from a transactional service model to one of building longer-term and deeper relationships by shifting the focus of its culture from "for service" to "for building long-term relationships" (Schneider, Bowen, Ehrhart, & Holcombe, 2000). This ability to change a culture in the fire and emergency service is supported by Hofstede, who states that an organizational culture is easier to change than a national culture (2001).

The culture of the U.S. could be modified toward a safety culture. The nuclear industry coined the term following accidents at Chernobyl in 1986 and at Three Mile Island in 1979 and used it to describe what was lacking in these two events. It is a concept that encompasses "a combination of managerial, organizational, and social factors" that contribute to accidents and near misses (Freimuth, 2006). Once cultural goals and expectations were identified, they were reinforced by managers to instill and then reinforce these changes. Regarding culture in the American fire and emergency service community, it has been said that "without the emergence of a new safety culture, all attempts [at increasing firefighter safety] will be in vain" (Siarnicki, 2010, p. 9).

Climate exists within a culture, so moving toward a safety culture would require movement toward a safety climate. While the main focus of this paper is cultural (versus climate) change, it is worth acknowledging the concept of climate and its close relationship to culture while differentiating the two concepts. Safety climate is not only a set of values, beliefs and perceptions about safety as a concept, but also the policies, procedures and practices that support safety in an organization (Colley, Lincolne, & Neal, 2013; Goulart, 2013). Climate is more temporal and local to a particular unit, whereas culture is broader and spans the entire organization, and in some cases, the profession (Mortenson, 2014).

One of the gradual shifts that can be made from the current culture toward a safety culture is to focus on fire-safe behavior, shifting away from heroic acts. Alan Brunacini, former chief of the Phoenix Fire Department and a firefighter there since 1958, describes the problem with the current nonsafety culture that focuses on heroic acts in this way:

"For 225 years, it was OK for a burning building to kill us. When the fire kills us, our department typically conducts a huge ritualistic funeral ceremony, engraves our name on the honor wall, and makes us an eternal hero. Every Line of Duty Death gets the same terminal ritual regardless if the firefighter was taking an appropriate risk to protect a savable life or was recreationally freelancing in a clearly defensive place ... Genuine bravery and terminal stupidity both get the same eulogy. Our young firefighters are motivated and inspired to attack even harder by the ceremonialization of our battleground death" (2008, pp. 6-7).

By emphasizing actions that violate safety guidelines and awarding firefighters for heroic acts that come at a greater-than-usual level of risk or unnecessary danger (Walton et al., 2000), the message being communicated within the culture is that these types of behaviors are acceptable and will be rewarded. "Most of the awards for valor usually involve ... doing things you aren't supposed to do. It's in our nature to want to save someone. If nothing goes wrong despite ignoring the rule, you'll be praised for saving someone" (Peterson et al., 2010, p. 27). Brunacini explains this disregard for safety by suggesting that today's firefighters "... have never stopped hearing Ben [Franklin]'s voice tell them to be Fast/Close/ Wet when they are responding to a fire. I think this is what culture really means in the current safety discussion" (2008, p. 9). Firefighters need a safety culture message that speaks louder than Ben Franklin's whispers to effect a change within a system that promotes and rewards appropriate risk management behaviors.

A concise summary for the role of culture in the fire and emergency service is provided in this quote from the Charleston, South Carolina, report on nine firefighters killed in 2007: "The cultural lessons may be the most important and also the hardest to embrace" (Laws, 2008, p. 64). Making sense of cultural lessons such as this requires a solid understanding of the organization's history (Hofstede, 2001). While much of the work on injury

and fatality reduction in firefighting has focused on technology and increasingly more stringent regulations, little has focused on the culture.

A closing thought from Hofstede (2000) serves as a fitting end to the discussion of the organizational culture and values in the fire and emergency service and the need for a shift in this culture to reduce on-duty fatalities. "Uniformed organizations have to balance their attempts to introduce new ways of working ... with the necessity of preserving traditional basics. Changing uniformed cultures requires patience and wisdom" (p. 481). It is the intent of this research to develop some of the wisdom necessary to effect a positive change in the fire and emergency service by reducing the number of on-duty deaths through first understanding the existing values of the fire and emergency service.

Areas of Focus for Cultural Change in Fire and Emergency Services

Thus far, this report has defined culture, described the origins and characteristics of the culture of the American fire and emergency service community, and made a case to move toward a safety culture. The staggering death and injury toll within the fire and emergency service has also been detailed, and from that description, it is clear that the losses experienced are disproportionate to the decreasing number of fires in the U.S.

The culture of unsafe practices may be so deeply ingrained that efforts to change are viewed as challenges to fundamental beliefs, while other unsafe practices are created by the culture of the fire and emergency service as a whole. Still other behaviors, which are not cultural or motivational, are the result of an individual's health or family history. The Project Team focused on the changes that could be standardized and easily implemented within an organization to effect change.

Using the focus areas and their objectives, the Project Team concentrated on developing sets of behaviors for chief officers, Company Officers (COs) and firefighters that minimize risk. These behaviors were derived using a frequency analysis and consensus of the working group. Risk-taking behaviors have been shown to be an organizational problem and not one that lies solely with firefighters' behaviors; therefore, strategies to change firefighter behavior need to address multiple levels of influence. The working group identified the following areas of focus: situational awareness, individual responsibility, leadership, health and wellness, training, vehicle operations, seat belt usage, recruiting, and environmental factors.

Situational Awareness

Fire and emergency service organizations should concentrate on implementing and demonstrating an effective and measurable model to improve situational awareness of all responders, along with the command and control of all incidents. One way to encourage this change is for fire and emergency service organizations to draw on a risk management approach that obtains input from firefighters and involves a cyclical process of identifying operations or activities that pose high risk for injuries, redesigning operating procedures to reduce risks, implementing these changes, and evaluating their impact. The focus areas of risk behavior modification are situational awareness and inadequate command, control and supervision.

There is considerable room for discussion in defining the boundary limits for acceptable and unacceptable risk in relation to potentially survivable or nonsurvivable conditions, and increased situational awareness aids in establishing these limits. Situational awareness is defined as "the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future" (Endsley M., 1988).

The study of decision-making with its many subsets, including situational awareness, is at its core: the study of human factors and human error. It is the study of complex interactions of human behavior and the consequence of those actions. One area of scholarly agreement is that understanding of the complex interaction between human causal factors is always likely to see changes, though it is imperfect and incomplete (Wall, 2012). S. Dekker points out that some labels, such as complacency or loss of situational awareness, are a better and more accurate description of events than labeling an accident as human error; they appear to give a reason behind the behavior. In high-risk occupations that have already failed to predict complex situations, it is nearly impossible to completely engineer all safety mechanisms; thus, human decision-making must be studied and well-understood (Dekker, 2002).

Situational awareness becomes a key factor in cases where it is not known whether a building is occupied or unoccupied and whether the occupants are still alive or already deceased. Should firefighters risk their lives to search for potential occupants under extreme fire conditions when there are no clear indications that the building is occupied, or where fire conditions suggest that it is extremely unlikely that anyone could be saved?

Photo by Ron Moore, Courtesy of Cornbelt (Illinois) Fire Protection District

Photo by Ron Moore, Courtesy of Prosper (Texas) Fire Rescue

Individual Responsibility

The two key aspects that apply to every member of the fire and emergency service at every level are accountability and personal responsibility. Every individual, from entry-level firefighter to fire chief, must be accountable for meeting the expectations assigned to his or her role and position within the fire and emergency service. All individuals must also accept personal responsibility for their own health and safety, as well as for that of their co-workers and particularly for that of anyone they supervise.

Accountability is an inherent aspect of management and supervision, expanding at each successive level of hierarchy. The fire chief cannot avoid accountability for the overall performance of the fire and emergency service organization and for every positive or negative occurrence. The fire chief must hold subordinates accountable for

performance within their areas of responsibility. The same principle applies to every level, down to the individual firefighter who is accountable to the organization as a whole but directly accountable to a supervisor and usually also to a group of co-workers.

Accountability is often ignored until something bad happens — in this case, an incident that results in on-duty injury or death. Positive accountability is associated with ensuring that all of the proper policies and programs are in place to prevent this type of occurrence, whereas negative accountability begins with attempting to explain why they were not in place after a preventable event has occurred. The most undesirable type of accountability comes from outside an organization, when individuals have to defend the organization, or even themselves, in legal proceedings.

Photo by Ron Moore, Courtesy of Prosper (Texas) Fire Rescue

Leadership

Leadership is often mentioned as a key component in relation to implementing safety policies and programs. Change is unlikely to occur unless the leaders of an organization embrace the effort and demonstrate a commitment to the endeavor. This applies directly to the formal leadership, which includes labor as well as management, and it often includes informal but influential leaders within the organization.

Effective leadership must go beyond simply issuing directives and policy statements. The members of a fire and emergency service organization can generally differentiate between policies that are intended to satisfy a duty or responsibility and legitimate efforts to lead the organization in a specific direction. There are many examples of fire and emergency service organizations that have issued policies that are based on recommended safety and health standards and then failed to demonstrate a true commitment to those policies.

Health and Wellness

Almost half of all firefighter fatalities in the U.S. are cardiac-related (USFA), and the majority of those deaths are found to be related to pre-existing and preidentified medical conditions. These factors reinforce the message that all firefighters should be periodically evaluated to ensure that they are medically and physically fit to perform their expected duties. This message is incorporated within NFPA 1500. It is also expressed in FLSI 6, which states: **Develop and implement national medical and physical fitness standards that are equally applicable to all firefighters, based on the duties they are expected to perform.**

Although the message is clearly stated and its importance is widely accepted, the American fire and emergency service community has been very slow to adopt mandatory policies to implement such requirements. The necessary standards have been developed and adopted, yet there are still fire and emergency service organizations without programs of this nature and tens of thousands of active firefighters who have not been medically certified for emergency duty.

The two primary factors that inhibit the adoption of mandatory medical and fitness standards are cost and the belief that a substantial percentage of fire and emergency service members would be unable to meet the requirements. This behavioral aspect reflects the determination of many individuals who join the fire and emergency service or who continue to serve in spite of their medical status and physical fitness limitations. Indeed, many fire and emergency service organizations would face a serious crisis if the recommended policies were immediately mandated, as they may lack the resources to medically screen all personnel and to recruit new members to replace those who are found to be ineligible for service.

Cost is a significant problem for the various types of fire and emergency service organizations; however, the potential loss of active members may be a more critical concern for many volunteer fire and emergency service organizations that are already dealing with recruiting and retention issues and don't have the added incentive of pay to bring new recruits in. In addition, volunteer fire departments face additional barriers, such as the fact that they typically do not provide health insurance for their members, they typically don't have access to a department doctor, and departments in

rural areas may not have easy access to medical resources. Within the career fire and emergency service, the concern tends to be associated with the fate of career employees who are determined to be unfit for duty.

The individual determination of many fire and emergency service members to remain active in physically demanding positions in fire and emergency service organizations, in spite of risks to their own health, is evident from the half of LODDs that result from medical causes. This behavior may be driven by dedication to the fire and emergency service mission, as well as the sense of membership within the fire and emergency service community.

Training

While training is often viewed as an essential component to accomplish any type of positive change in firefighter behavior, it is also frequently noted that inappropriate training is encouraging or reinforcing high-risk behaviors. This suggests

that the problem may not be limited to inadequate training; it may also involve applicable training that establishes inappropriate attitudes, actions, beliefs and behaviors.

Fire and emergency service training organizations must be conscious of the behavioral influences that are incorporated within the content of their training programs, as well as the manner in which training is being delivered. The attitudes, beliefs and behaviors of the instructor may be more influential than the program content itself.

In addition to ensuring that the intended content is delivered and the desired attitudes and behaviors are developed, it is essential to ensure that training activities are conducted with a high degree of safety. The annual reports of firefighter fatalities almost invariably include deaths associated with training activities, whether from traumatic injuries or medical causes. The latter category often includes overexertion, heat stress, and a variety of known and unknown medical conditions.

Initial Firefighter Training

Firefighter competency is foundational to firefighter safety. Training for firefighters (NFPA 1001, Standard for Fire Fighter Professional Qualifications) should include educational components that discuss the new science and research now available, including fire behavior based on factors such as fuels present, the limitations of PPE, and the limitations of the human body when fighting fire in the new protective ensembles. Back to basics isn't more hose evolutions — it is the **why** behind what we do. Fire and emergency service organizations should continue to monitor research and the ensuing evidence to adapt/update protocols and practices that improve safety and fire protection. Firefighters should be taught to evaluate the risk of every action so they never have to answer "I don't know" when asked why they took a particular action. Firefighters should not take action without knowing the possible consequences.

The fire and emergency service has seen and heard of presentations based on the Underwriters Laboratory (UL) and National Institute of Standards and Technology (NIST) research conducted with the Chicago Fire Department; FDNY; Spartanburg, South Carolina Fire and Rescue; and others that suggest a change to traditional first-arriving actions. These research reports, based on science, suggest changes to the initial on-scene report and operational mode, which are designed to limit exposure to risk, that include "aggressive defensive operation being performed in preparation for an interior attack."

The UL and NIST live burn tests are aimed at quantifying emerging theories about how fires are different today. This difference is largely due to new building construction and the composi-

tion of home furnishings and products that in the past were mainly composed of natural materials, such as wood and cotton, but now contain large quantities of petroleum-based products and synthetics that burn faster and hotter. Whereas a fire in a room once took approximately 20 minutes to experience "flashover" — igniting all the contents — this can happen with today's products in as little as four to five minutes.

The primary motivation for the live burn experiments is the changing dynamics of fires. The contents of American homes have changed significantly in the past few decades. Plastics and other synthetic materials have replaced the natural materials that once made up the bulk of furniture items. In addition, modern living spaces tend to be more open, less compartmentalized and better insulated than homes built years ago, leading to increased fire spread in "modern dwellings."

The UL/NIST studies suggest that a change in traditional tactics begins with a direct exterior attack, making the interior safer for entry when the interior attack begins. This is being viewed as particularly appropriate in reduced staffing or delayed backup situations. These changes may pose a cultural challenge with the use of the verbiage, such as "aggressive exterior attack" instead of the traditional "defensive operation," which implies that we are giving up. Regardless of how the incident begins, in the most critical situations, the IC has to make the decision to switch from an offensive strategy to a defensive strategy and withdraw firefighters from interior operating positions based on an ongoing assessment of incident scene hazards.

Officer Training

Training for COs (NFPA 1021, Standard for Fire Officer Professional Qualifications) should include educational components, such as health and safety, leadership, and tactics for new building construction features, in addition to those changing components for firefighters. Back to basics for COs is not simply more leadership classes — it also includes the principles of reading smoke, adequate size-up with a declaration of strategy, understanding fire behavior, building construction, victim survivability profiling, and using the Incident Command System to help manage the incident with safety as the overarching, guiding principle. COs should be asking themselves:

- "Am I training on the types of incidents to which we actually respond?"
- "Do we have experience or training on this type of incident?"
- "Is another company better trained or equipped to handle this incident?"

Training for chief officers (NFPA 1021) should also include educational components related to budgeting (execution and understanding) and maximizing partnerships to improve service delivery. Back to basics for chief officers who operate on the fireground should include skills needed for proper apparatus placement, managing multiple divisions/groups, and managing personnel accountability, in addition to those new skills being learned at the CO level.

Officers who have responsibilities for overseeing a fire and emergency service organization's health and safety program should be meeting the requirements of NFPA 1521, Standard for Fire Department Safety Officer. Training for such officers should include educational components, such as health and safety program management, workplace safety compliance, fireground tactics, hazard recognition, and Incident Safety Officer's responsibilities. While not every department has a designated Health and Safety Officer, it should be every officer's responsibility to function as a "safety officer" both on and off the fireground.

Emergency and Personal Vehicle Operation

The operation of fire and emergency service organization vehicles and apparatus warrants specific attention. As indicated by the NFPA, during the time period 1998-2013, 13 percent of LODDs occurred while responding to or returning from calls for service. Organizations should concentrate on implementing and demonstrating an effective and measurable model of driver/operator training that advances in skill sets throughout a career and that ensures quality and driver/operator accountability. The focus areas of risk behavior modification are driver capability, quality assurance and accountability.

Factors Influencing Safe Emergency Response

The basic nature of the emergency response mission encourages drivers to reach the scene of an incident as quickly as possible, and in the case of more rural departments, firefighters are encouraged to first reach the fire station more rapidly. Traffic laws provide specific allowances and exemptions for emergency vehicles in order to reduce response times. Sirens, air horns, warning lights, as well as larger and more powerful engines tend to increase the sense of urgency and the driver's perception of invincibility.

The two factors that are most often identified in relation to reducing emergency vehicle crashes are increased driver training and enforcement/ strict adherence to safe driving procedures. The logic of these influences is self-evident; however, attention must also be directed toward the factors that encourage drivers to stretch the limits of reasonable and prudent driving habits.

In addition, response time is often used as a primary performance indicator for fire and emergency service organizations, and shaving a few

seconds from the annual average response time is considered to be a significant accomplishment. All of these factors appear to justify higher levels of risk when responding in an emergency mode. Driving faster is closely associated with driving more aggressively — taking chances and forcing or challenging other drivers to yield the right of way. Excessive speed is a known risk factor for crashes and crash-related death and injury.

Additional factors have been identified as encouraging inappropriate emergency vehicle driving habits. Competition and peer pressure may encourage faster response simply to get to the scene of an incident first or ahead of a rival company. In some fire and emergency service organizations, faster response speeds have been noted when multiple companies are responding to the same incident than when only a single company is responding. At the same time, each of these factors is offset by the expectation to drive safely and with due regard for the safety of all others who may be encountered en route to the location of the emergency incident. Safety is presented as a legal and moral obligation as well as an organizational value.

Driver/Operator policies will assist every jurisdiction in establishing the guidance needed for their members to safely operate all vehicles when responding to or returning from an incident, beginning with proper licensure for the jurisdiction, as well as proper training on how to drive and operate the specific emergency vehicles that the driver will be responsible for. It is prudent that not only departmental policies but also national guidelines be established that define tiered emergency responses for all departments. These policies must address both personal and department vehicles and cover both emergency and nonemergency driving expectations.

Photo by Ron Moore, Courtesy of Prosper (Texas)
Fire Rescue

Photo by Ron Moore, Courtesy of Prosper (Texas) Fire Rescue

Based on the assumption that every organization may need to create or revise driver/operator policies, a list of potential incentives that organizations can use to promote driver/operator behavioral changes and a list of possible consequences that organizations may face if they choose not to adopt a driver/operator policy are provided at www.ffsafetyculture.org.

Seat Belt Use

The broad scope of the cultural issue becomes evident when it is applied to the question of why many firefighters do not use seat belts when riding in fire apparatus. While the adoption and enforcement of a policy requiring the use of seat belts appears to be relatively uncomplicated, the issue is considerably more complex than it appears.

The vast majority of fire and emergency service organizations have adopted official written policies that require firefighters to use seat belts whenever vehicles are in motion. There are no known written policies in fire and emergency service organizations that allow for the nonuse of seat belts. Requirements to use seat belts are incorporated in many state vehicle codes, and the same policy is clearly stated in NFPA 1500. In addition, tremendous efforts have been put forth to educate firefighters on the need to use seat belts and promote their use as a personal safety decision.

Considering all of these efforts, it is appropriate to ask why so many firefighters continue to not use seat belts. Below is a list of factors that have been identified as contributors to the problem:

- The belief that the urgency of emergency response requires donning protective clothing and equipment en route.
- The belief that a fastened seat belt will delay the firefighter's ability to exit the vehicle upon arrival at the scene of the emergency.
- The difficulty of manipulating inadequately designed seat belts in the limited seating space that is available and in the presence of breathing apparatus straps.
- The sense of personal invincibility that comes from riding in a vehicle that is larger and heavier than most other vehicles on the road.
- The fear of being viewed as nonconforming when others are not using their seat belts.
- The failure to enforce officially adopted policies creates the impression that compliance is not a high priority for managers and supervisors.

While all of the noted rationalizations apply to emergency response, they often carry over to nonemergency situations. Firefighters may easily develop the attitude that if it is acceptable to ride to an emergency without a seat belt, then there is no need to wear a seat belt when returning from the emergency or when riding in a fire and emergency service organization vehicle for any other reason.

One key factor appears to be the priority that is directed toward seat belt use by the fire chief and senior level officers of the fire and emergency service organization. A strong policy statement accompanied by a serious enforcement policy is usually effective in achieving a high level of compliance. In larger organizations, the policy must be enforced at each successive level of supervision down to the individual firefighter.

Where there are valid technical issues, such as problems with the design and installation of seat belts, management must be prepared to address those problems as part of the overall strategy. Members cannot be expected to work with equipment that does not perform the required function.

Recruiting

An important point made by Hofstede (2000) is that one way to change the culture of a uniformed organization, such as the fire and emergency service, is to recruit more members with values that are different or independent from the organization. Soeters and Boer (2000) found this to be the case to help reduce military aircraft accidents. By incorporating more civilians and fewer people who had been indoctrinated into the military value system, a cultural shift toward a safer work environment ensued, and the number of aircraft accidents was reduced.

The same factors tend to influence individuals to become firefighters, both career and volunteer. The fire and emergency service is often viewed as an attractive outlet for individuals who are seeking opportunities to face extreme challenges and imminent danger. The recognition that is often associated with heroic actions is further motivation for many individuals to become involved in the fire and emergency service. The strongest, bravest and most daring individuals are often motivated to become firefighters.

The whole notion of daring and death defiance is continually applied to the fire and emergency service from external sources. The public tends to view firefighters as individuals who are willing to face extreme risks in order to save lives and

property. These public perceptions are naturally incorporated into the firefighters' self-image and tend to further promote risky behaviors.

The media portrayal of fire and emergency service workers is generally not realistic, and it does not represent a true slice of what the work of the fire and emergency service is. Protective clothing may be altered or not used to show an actor's face or demonstrate a level of aggression or risk that is unreasonable in a real-world setting. This image is further reinforced by slogans such as "No Fear" and "Are You Tough Enough to Be a Hero?" as well as graphics portraying firefighters as dragon slayers and warriors facing overwhelming threats with nothing more than courage and daring. Peer pressure and competition often entice a "more daring" spirit than other individuals, companies, or fire and emergency service organizations. In some cases, actions that demonstrate appropriate caution are viewed as cowardly or impossible.

The warrior image is increasingly used to promote a sense of preparedness to engage in actions that require high levels of training and involve extreme physical challenges. These concepts are not inconsistent with the values of a strong safety culture. In many cases, the warrior image is presented in a context that appears to label the safety movement as a cowardly approach, expressing the notion that warriors are not concerned with safety because they are able to overcome any adversity.

Environmental Factors

It has been observed that the current fire and emergency service generation has been raised in an environment that glorifies risk and expresses little or no concern for the potential negative consequences of bad decisions. The Internet along with tremendous expansion in the use of social media outlets, such as Facebook, Twitter and Instagram, and the influence of national fire service websites provide a continual supply of video clips and photos showing individuals risking life and limb in the pursuit of thrills and recognition. While many of these efforts result in obvious injuries, the consequences of such misadventures are never included in the video that is posted. There is an aura that even anonymous recognition for extreme daring is sufficient justification to accept the consequences of failure. Additionally, newer members who are accustomed to playing video games that allow individuals to experience simulated confrontation with every conceivable danger, with absolutely no risk of death or injury to the thrill seeker, may contribute to a lack of understanding of real-life consequences of high-risk behaviors.

Summary

The culture of the American fire and emergency service community is rich and time-honored. The culture has aspects that provide superior protection for life and property, while it also has portions that contribute unnecessarily to fire-fighter and emergency worker injury and death. The culture can be changed at national, state and local levels without diminishing the quality of services provided by enhancing firefighter competencies needed at emergency scenes. Both the culture and climate can be moved toward a common sense, safety-oriented approach to balance the risks and rewards of questionable behaviors better.

This report generates important ideas that can be implemented to address culture and climate in an effort to change behavior in the American fire and emergency service community, which will lead to fewer injuries and deaths.

This document provides a foundation for future work in this area that will involve developing enhanced online educational materials and outreach. fire and emergency service organizations and individual responders can begin to engage in this move toward positive cultural change by visiting www.ffsafetyculture.org.

This page intentionally left blank.

Bibliography

Archer, D. (1999). *Exploring Bullying Culture in the Para-Military Organization*. International Journal of Manpower, 20(1) pp. 94-105.

Baigent, D. (2001). One More Working Class Hero: A Cultural Audit of the UK Fire Service. Retrieved November 4, 2011 from http://www.worldcat.org/title/one-more-last-working-class-hero-a-cultural-audit-of-the-uk-fire-service/oclc/52951673.

Bland, R. E. (1973). *America Burning: The Report of the National Commission on Fire Prevention and Control.* Washington, DC.

Brennan, C. (2011). The Combat Position: Achieving Firefighter Readiness. Tulsa, OK: Pennwell.

Brunacini, A. V. (2008). Fast/close/wet. Retrieved November 4, 2011 from http://www.riskinstitute.org/peri/images/file/S908-D2-Brunacini.pdf.

Bruni, J. V., Jr. (2012). Occupational Health and Safety for the Fire Service. Upper Saddle River, NJ: Pearson.

Clark, B. A. (2011). Your Behavior Comes From Ben Franklin's DNA: Fast, Close, Wet, Risk, Injury, Death. Retrieved November 4, 2011 from http://www.firehouse.com/topic/firefighter-safety/your-behavior-comes-ben-franklins-dna-fast-close-wet-risk-injury-death.

Cochran, K. J. (2006). The Fire Chief of the Future. In Buckman III, J. M. (Ed.), Fire Chief Officer's Desk Reference (pp. 453-468). Sudbury, MA: Jones and Bartlett.

Colley, S. K., Lincolne, J., & Neal, A. (2013). An Examination of the Relationship Amongst Profiles of Perceived Organizational Values, Safety Climate and Safety Outcomes. *Safety Science*, 51(1), 69-76. Retrieved November 4, 2011 from http://dx.doi.org/10.1016/j.ssci.2012.06.001.

Compton, D. (2003). Leadership for Today and Tomorrow. In Coleman, R. J. (Ed.), *The Fire Chief's Handbook*, 6th ed. (pp. 205-228). Tulsa, OK: Pennwell.

Cross, H. (2010). Implementing the 16 Firefighter Life Safety Initiatives in a Fire Department. In National Fallen Firefighters Foundation, *Understanding and Implementing the 16 Firefighter Life Safety Initiatives* (pp. 265-271). Stillwater, OK: Fire Protection Publications.

Daniels, I. D. (2005a). Unacceptable Behavior. Fire Chief, January 2005.

Daniels, I. D. (2005b). Cultural Combat Tactics: Addressing Safety Culture in Your Organization. Presented at Firehouse Expo, Baltimore, MD in July 2005.

Dekker, S. (2002). *The Field Guide to Human Error Investigations*. Burlington, VT: Ashgate Publishing Company.

Endsley, M. (1988). Design and Evaluation of Situation Awareness Enhancement. In *Proceedings of the Human Factors Society 32nd Annual Meeting* (pp. 97-101). Santa Monica: Human Factors Society.

Freimuth, R. J. (2006). Perceptions of Safety Culture: A Study Of Fire Chiefs in Volunteer Fire Department. (Doctoral dissertation, Capella University, 2006.)

Gasaway, R. B. (2005). Some Traditions Haunt Us Every Day. Fire Engineering, 158(2), 10-14.

Goodman, E. A., Zammuto, R. F., & Gifford, B. D. (2001). The Competing Values Framework: Understanding the Impact of Organizational Culture on the Quality of Work Life. *Organization Development Journal*, Fall 2001.

Goulart, C. (2013). Resolving the Safety Culture/Safety Climate Debate. Blog post on 11-08-13. Retrieved from http://ohsonline.com/Blogs/The-OHS-Wire/2013/11/Resolving-the-Safety-CultureSafety-Climate-Debate.aspx?p=1.

Granito, J. (2003). Origins of Firefighting in the US. In Kelly, E. L., Yatsuk, R. A., & Routly, J. G. (Eds.), *Firefighters*. Emmitsburg, MD: NFFF.

Hofstede, G. (2001). *Culture's Consequences: Comparing Values, Behaviors, Institutions, And Organizations Across Nations*, 2nd ed. Thousand Oaks, CA: Sage.

Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). *Cultures and Organizations: Software of the Mind*. New York: McGraw Hill.

Hofstede, G., & Peterson, M. F. (2000). Culture: National Values and Organizational Practices. In Ashkanasy, N. M., Wilderom, C. P., & Peterson, M. F. (Eds.), *The Handbook of Organizational Culture And Climate* (pp. 401-416). Thousand Oaks, CA: Sage.

Houdous, T. K., Pizatella, T. J., Braddee, R., & Castillo, D. N. (2004). Fire Fighter Fatalities 1998-2001: Overview with an Emphasis on Structure Related Traumatic Fatalities. *Injury Prevention* (10) pp. 222-226.

Kluckhorn, C. (1951). The Study of Culture. Stanford: Stanford University Press.

Kunadharaju, K., Smith, T. D., & DeJoy, D. M. (2011). Line-of-Duty Deaths Among U.S. Firefighters: An Analysis of Fatality Investigations. *Accident Analysis and Prevention* (43) pp. 1171-1180.

Laws, J. (2008). The Lessons of Charleston. *Occupational Health and Safety*. Retrieved on November 4, 2011 from http://ohsonline.com/articles/2008/08/the-lessons-of-charleston.aspx.

Lewis, S. (2004). Research Paper Two: Gender and Firefighter Training. Retrieved November 4, 2011 from http://www.fitting-in.com/c/GenderProjectPaper2.pdf.

Linke, T. (2008). Standard Operating Procedures for Single-Family Dwelling Fires Lincoln Fire and Rescue. EFO Paper. Retrieved from http://www.usfa.fema.gov/pdf/efop/efo42634.pdf.

Mearns, K., & Flin, R. Assessing the State of Organizational Safety — Culture or Climate? Current Psychology: Developmental, Learning, Personality, Social. 1999; 18:5-17.

Mortenson, R. P. (2014). Personal Correspondence.

Murphy, J. (2011). When Fire Wins: Causes of FDNY Deaths. Retrieved November 4, 2011 from http://www.citylimits.org/news/articles/4421/when-fire-wins-causes-of-fdny-deaths.

National Fallen Firefighters Foundation (2011). *Understanding and Implementing the 16 Firefighter Life Safety Initiatives*. Stillwater, OK: Fire Protection Publications.

Pessemier, W. (2008a). Developing a Safety Culture in the Fire Service. *International Journal of Fire Service Leadership and Management* (2)1.

Pessemier, W. (2008b). Improving Safety Performance by Understanding Perceptions of Risk and Improving Safety Management Systems. Retrieved November 4, 2011 from http://www.riskinstitute.org/peri/images/file/S908-D2-Pessemier.pdf.

Peterson, K. K., Witt, M. B., Morton, K. B., Osmsted, M. G., Amandus, H. E., Proudfoot, S. L., & Wassell, J. T. (2010). Fire Fighter Fatality Investigation and Prevention Program: Findings from a National Evaluation. Retrieved November 4, 2011 from http://www.rti.org/pubs/rr-0008-1003-peterson.pdf.

Pidgeon, N., & O'Leary, M. (2000). Man-Made Disasters: Why Technology and Organizations (sometimes) Fail. *Safety Science* (34)15-30.

Routley, J. G. (2007). City of Charleston: Post Incident Assessment and Review Team. Phase I Report. Retrieved November 4, 2011 from http://www.nifc.gov/safety/safety_documents/phase1.pdf.

Schaenman, P. (1996). Wildland Firefighter Awareness Study. Retrieved November 4, 2011 from https://www.iaff.org/07News/PDF/CHSRpt.pdf.

Schein, E. H. (1992). Organizational Culture and Leadership: A Dynamic View. San Francisco: Jossey-Bass.

Schein, E. H. (2000). Sense and Nonsense About Culture and Climate. In Ashkanasy, N. M., Wilderom, C. P., & Peterson, M. F. (Eds.), *The Handbook of Organizational Culture and Climate* (pp. xxiii-xxx). Thousand Oaks, CA: Sage.

Schein, E. H. (2004). Organizational Culture and Leadership. San Francisco: Jossey-Bass.

Schneider, B., Bowen, D., Erhart, M. E., & Holcombe, K. M. (2000). The Climate for Service: Evolution of a Construct. Located in N. M. Ashkanasy, C. Wilderom, & M. F. Peterson (Eds.), Handbook of Organizational Culture and Climate (pp. 21 – 36). Thousand Oaks, CA: Sage.

Schneider, B. (1973). The Perception of Organizational Climate: The Customer's View. *Journal of Applied Psychology*, 57, 248-256.

Siarnicki, R. J. (2010). National Fallen Firefighters Foundation — Firefighter Life Safety Initiatives — Everyone Goes Home Program. In National Fallen Firefighters Foundation, *Understanding and Implementing the 16 Firefighter Life Safety Initiatives* (pp. 3-22). Stillwater, OK: Fire Protection Publications.

Soeters, J. L. (2000). Culture in Uniformed Organizations. In Ashkanasy, N. M., Wilderom, C. P., & Peterson, M. F. (Eds.), *The Handbook of Organizational Culture and Climate* (pp. 465-481). Thousand Oaks, CA: Sage.

Soeters, J. L., & Boer, P. (2000). Culture and Flight Safety in Military Aviation. *International Journal of Aviation Psychology*, 10, 111-133.

Stackman, R. W., Pinder, C. C., & Connor, P. E. (2000). Value Lost: Redirecting Research on Values in the Workplace. In Ashkanasy, N. M., Wilderom, C. P., & Peterson, M. F. (Eds.), *The Handbook of Organizational Culture and Climate* (pp. 37-54). Thousand Oaks, CA: Sage.

Thompson, A., III, & Bono, B. (1993). Work Without Wages: The Motivation for Volunteer Firefighters. *American Journal of Economics and Sociology*, 52, 323-343.

U.S. Fire Administration (2008). Firefighter Fatalities in the United States in 2007. Retrieved November 4, 2011 from http://m.usfa.fema.gov/downloads/pdf/publications/ff fat07.pdf.

Vaughan, D. (1997). Targets for Firefighting Safety: Lessons from the Challenger Tragedy. *Wildfire*. Retrieved on November 4, 2011 from http://www.blm.gov/pgdata/etc/medialib/blm/wy/programs/fire/hros.Par.15551.File.dat/Targets4FirefightingSafety.pdf.

Wall, D. (2012). Unpublished dissertation.

Walton, W. D., Bryner, N., Madryzkowski, D., Lawson, J. R., & Jason, N. H. (1999). Fire service needs workshop proceedings. Retrieved November 4, 2011 from http://www.fire.nist.gov/bfrlpubs/fire00/art038.html.

For more information or copies of this publication, please contact:

U.S. Fire Administration

16825 South Seton Avenue Emmitsburg, Maryland 21727 800-561-3356 www.usfa.fema.gov

FA-342/April 2015

FFF FY 18-07